
tional loading (02 < Oo during 0.5ti) occurs and then repeated unloading (the stress o2<Oo is applied 
during T until rupture). Integrating (6) for such loading, we obtain that the time T of the stress 
o= acting inthe second cycle is 0.5t2. If a loading with many passages through oo is considered, then 
it can be shown by an analogous method that rupture sets in because of the combined action 
of the stress ~, during the time t, and the stress o2 during t=, where t, is the total time 
of application of the stress ~i in all the stages, and t= is the total time during which the 
stress ~2 was applied. It hence follows that the sum of the partial times is independent of 
the quantity of passages of the stress through ~o, and agrees with the value (9). Therefore, 
model (3) and (4) forthe description of loading with single and multiple passages through 
the stress ~o results in a unilateral deviation (i < A < 2) from the linear summation prin- 
ciple for the partial times. 

Let us note that if the rupture condition (4) is replaced by 

min (~, ~ ) = t ,  

then the deviation from condition (2) towards A < i can be described by using the model 
and (12). 

(12) 

(3) 
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PROBLEM OF NORMAL PRESSURE WAVES RUNNING AGAINST A STAMP 

V. A. Babeshko, Zh. F. Zinchenko, and A. V. Smirnova UDC 539.3 

The problem of the motion of a rigid massive circular stamp with a flat base under the 
action of oncoming normal pressure waves is examined~ The stamp is assumed to be in fric- 
tionless contact with an elastic medium. It is assumed that the pressure wave is a plane 
wave and arrives from infinity. By removing the normal pressures from the surface of the me- 
dium by solving the boundary-value problem in the absence of the stamp (unmixed problem), the 
starting boundary-value problem reduces to the following mixed problem: a wave, which inter- 
acts with the stamp, travels along the surface of the medium screened from the normal pres- 
sure. Adding to the solution of this mixed problem the solution corresponding to the unmixed 
problem, we obtain the solution of the starting problem. Taking into account the fact that 
it is easy to solve the unmixed problem with the help of Fourier and Laplace integrals, in 
this work, we are primarily concerned with the mixed problem noted above with a screened sur- 
face outside the stamp. 

i. We are studying the problem of the interaction of a rigid stamp with mass m, occupy- 
ing a circular region ~ with radius a in a plane, with an elastic layered medium. It is as- 
sumed that the contact is frictionless, while a uniformly moving normal pressure pulse p(x, 
y, t) acts on the stamp. It is necessary to find the normal component of the contact stress- 
es q(x, y, t), the vertical displacement of the center of the stamp ~(t), as well as the an- 
gles of its rotation relative to the horizontal axes m(t) and 8(t); we shall determine q(x, 
y, t) by solving the dynamic Lamb equation 

(~ ~ 2~)grad div U - - ~  rotrot U--pO2U/aP - -0  

with mixed boundary conditions and initial conditions. In particular, in the case of non- 
stationary action of the stamp on an elastic homogeneous half-space (z d0), the boundary con- 
ditions have the form 

-r~(x ,  y,  O, t) = %j.(x, y, O, t) = O, - - o o  < x,  y < + o o ,  
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w(x, y, O, t) = [(x, g, t), x, y ~ ~, 
(~z~(X, g, O, t) = O, x, g ~ Q, 

f o r  z--+--oo u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)-->- O, where f ( x ,  y ,  t )  i s  t h e  d i s p l a c e m e n t  of  a p o i n t  
on t h e  r i g i d  stamp w i t h  a f l a t  ba se  w i t h  c o o r d i n a t e s  (x ,  y ,  0 ) .  I n  a C a r t e s i a n  c o o r d i n a t e  
s y s t e m ,  whose o r i g i n  c o i n c i d e s  w i t h  t he  c e n t e r  o f  the  s tamp,  w h i l e  t h e  p o s i t i v e  Oz a x i s  c o i n -  
c i d e s  w i t h  t he  d i r e c t i o n  of  t h e  e x t e r n a l  normal  t o  t he  s u r f a c e  o f  t h e  medium, f ( x ,  y ,  t )  i s  
d e s c r i b e d  by t h e  f o l l o w i n g  e q u a t i o n :  

lCx, y, t) = 8(t) + r -- O(t)z. 

The initial conditions are assumed to be zero conditions, i.e., 

u(x, y, z, O) = v(z, y, z, O) = w(x, y, z, O) = O, 

u; (~, y, ~, o) = ~.~ (~, y, ~, o) = ~ (~, y, ~, o) = ol 

By using the Fourier transformation with respect to coordinates and the Laplace transforma- 
tion in time, the problem indicated reduces to solving an integral equation, depending on the 
Laplace transformation parameter s: 

i iKo(a,~,s)e-~(qx+~mdad~yq(~,TI ,  s)e '(~+~n)d~dTl=-/(x,y,s). (i.i) • 
4~ 

- - a o  - - 0 o  o 

Here ~(~j ~, s) is the Laplace transformation of the contact pressures q(5, ~, t)~with re- 
spect to time| ~(xi:~:y, s) is the Laplace transform:~of the vertical motion of: the stamp f(x, 
y, t)o We note that the function in the integrand Ko(a, B, s) for different types of lay- 
ered media has the same form as in corresponding problems involving steady state oscillations 
[I] with the frequency of oscillations m replaced by is (i is r Transforming in (i.I) 
to polar coordinates and expanding the function 

F(r, % s) =7Ix(r, (p), y(r, (p),s l, Q(p, ?, s) = ~[~(p, ?), ~l(p, ?), sl 

in a Fourier series with respect to ~ and y, we obtain equations for determining the Fourier 
coefficients : 

F(r, % s) = Co(S ) -1- Cx(s)re i~ -j- c_x(s)re -iq,, 
a 

S k(r,p,s)q.(O,s)pdp = F.(r,s), O~.~r~aj 
(1.2) 

O 

0o 

k (r, p, s) = f K (u, s) In (ur) In (up) udu~ n ---- -- |, O, |, 
0 

where  F_l(r, s ) =  c_x(s)r; Fo(r, s ) =  c0(s); Fl(r, s ) =  cl(s)r; co(s)=--~(s)', c,(s) and c - t ( s )  a r e  l i n e a r l y  r e -  
l a t e d  with the rotation angles ~(s) and ~(s); ~(s), ~(s), ~(s) are Laplace transforms of 
6(t), m(t), 8(t), respectively. The function K(u, s) has the properties established in [2]. 
Solving Eq. (1.2) for fixed values of the parameter s, using one of the well-developed meth- 
ods for studying this equation [2], we find 

1 

Q(r,q~,s)= ~ ch(s) Qh(r,%s).  
h = - - i  

Next, in order to solve the problem, we shall apply the Laplace transformation with respect 
to time to the equations of motion of the stamp with zero initial conditions and transform 
to polar coordinates: 

ms~ (s) = [ [ Q (r, % s)rdrdep - - I  ! 1) (r, (p, s)rdrdep, 

11s2w(s) = ~ j  Q(r, (p, s) r;- sin ~drd(p--,~.I P(r, % s)r2 sin r 

I : '=O(s)=--yaS  Q(r,(~,s)rZeosr ~P(r ,%s)r~'cOs(p&'d% 

(1.3) 
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where 11 and I~ are the moments of inertia of the stamp relative to the horizontal axes; 
P(r, ~, s) is the Laplace-transformed change in the external action on the stamp p(x, y, t) 
in polar coordinates. Substituting into (1.3) the expression found for Q(r, ~, s), we ob- 
tain a system of algebraic equations, from which the constants Ck(S ) are completely deter- 
mined= 

ms2co(s) = ~ ch(s) S j  Qh(r, %s)rdrdr  ,I Y P(r ,  r  
h =  --1 O 

2 1 

I1 s2 E )~1~c~ (s) = ~.~ ck (s) S S Qu (r, % s) r ~- sin epdrdq) - -  M1,  (s), 
m=l h = - - I  Q 

2 1 

I's2 ~=1 ~'~ Z~.~c~ (s) = ~=E-z ca(s)~.[  Oa (r, (p, s) r~ cos ~pdrdcp - -  M~p (s). 

(1.4) 

Here the sums on the left side are the angles of rotation of the stamp relative to the x and 
y axes in the Laplace transformation; Mav(S) is the moment of the external force relative to 
the x axis (n = i) or y axis (n = 2). By constructing the inverse Laplace transformation of 
~(s), ~(s), and ~(s), we obtain a solution of the problem formulated. 

2. As an example, we shall examine the problem of the motion of a circular rigid stamp 
in a plane on an elastic half-space (z~0) when an oncoming plane wave acts on itt 

/0, t>~ 2a/_V~: 
p (y, t) = [Ae (vt-~-) [a (Vt 

Equation (1.4) in this case reduces to the form 

- -  y - -  a ) l " .  

mS2Co (s) - -  2~ : c o (s) Qo (r, s) rdr --  2~ ~ Po (r, s) rdr,~ 
0 0 
a (2.1) 

ma2s2iel (s) = ~ Pl (r, s) r~'dr .2_ 2__~ c t (s) 01 (r, s) r2dr. 
0 0 

The functions Po(r, s) and P1(r, s) are determined based on the well-known properties of the 
L a p l a c e  and F o u r i e r  t r a n s f o r m a t i o n s  and have  the  form 

Po(r, s) = kl(s)Jo(irs/V ) -~- k~(s)Jo(kZr ) -{- k3(s)Jl(iar)(zr/i , 
P~(r, s) = kl(S)Yl(irs/V ) --7 k~(s)Ii(iar ) + ka(s ) 

[Jo(iar) - -  J2(kzr) ]~zr/2i, kl(s) = A(zVe-"s/v(s + o:V) -~', 
k2(s ) = --Ae-aa(s q- r + r -1 q- r 

ks(s ) = A(s q- ~V)-le-a=e-2../g, 

where go(z), g1(z) and g2(z) are Bessel functions and, in addition, 

.[ Po (r, s) rdr = k 1 (s) [1 (v:s/V) ~g/s  ~- k., ( s) [1 ((za) akz -{- k 3 (s) a212 (ca), 
0 

Y Pl (r,s) r2dr ~ i {kx (s) a2V/sI2 (as~V) - -  k~ (s) a~-/~I~. (~a) - -  ka (s) a ~ [[1(cza) ~ 3/aaI~. (~a)]}, 
0 

l,(z) and 12(z) are the modified Bessel functions. Equation (1.2) was solved by the method 
of fictitious absorption [3], since it permits separating analytically the singularity of the 
contact pressure on the stamp boundary and, in addition, the integrals of Qo(r, s) and Q1(r, 
s) in (2.1) are found by quadrature. In order to construct the functions ~(t) and ~(t), 
which are the original functions for the Laplace transforms ~(s) and ~(s), respectively, we 
use A. N. Tikhonov's regularization method [4]. The behavior of the vertical displacement 
of the center of the stamp ~ and its angle of rotation relative to the Ox axis ~ in time was 
analyzed numerically on a computer as a function of the velocity V of the oncoming pressure 
wave with the following parameters: A = i, s = I, n = i, ~ ffi 0.3, P = 2.5"i0 s kg/ms, ~ ffi 
7.2.104 kg/m-sec 2, where 9 is Poisson's coefficient, 0 is the density of the medium, and 
is the Lamb parameter of the given medium~ 
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The results of the calculations are presented in Figs. i and 2. The quantities ~(~) 
and m(T) multiplied by 4~ are indicated along the vertical axes and, in addition, �9 = t(l + 
t) -z. This substitution permits studying the behavior of the functions indicated over the 
entire time interval. Curves 1-3 correspond to V = i, I0, and 20 m/sec. 
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STABILITY OF WELL WALLS 

G. P. Cherepanov UDC 622.24.026.3.001 + 539.3 

I. Introduction. The scientific--technical problem of superdeep drilling is extremely 
difficult. Modern technology for constructing wells [1-3] consists of repeating the follow- 
ing cycle many times: drilling the bottom hole of a well with a special bit -- extracting 
pieces of the fractured rock with a flushing liquid -- wear or breakage of the drilling equip- 
ment and its replacement, usually including raising and lowering operations for the entire 
column of drillpipes. 

Reinforcement of the walls of superdeep wells (exceeding 6 km) with casing columns be- 
comes technically very complicated due to the loss of stability of the well walls, their col- 
lapse, and as a result, the large increase in the transverse cross section. In this case, 
the presence of the hydraulic pressure of the column of washing liquid serves as an important 
stabilizing factor. Clay and other additives in this liquid, by plugging pores, lead to the 
formation of a dense crust on the walls, hereby hermetically sealing the well. In what fol- 
lows, we examine only vertical wells that are not protected by a casing column near the bot- 
tom hole at a distance, at least, of the order of i00 diameters of the well. Percolation of 
the liquid into the rock is neglected. 

A very important factor under these conditions is the pressure from the above-lying rock. 
Considerable technological difficulties in superdeep drilling also arise from the increase in ~ 
temperature (approximately by 20~ for each kilometer). 

2. Local Instability of the Walls of a Circular Well. The well is a cylindrical cavity, 
r < ro, 0 < z < H in the earth's crust z < H, where r and z cylindrical coordinates (z coin- 
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